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Abstract

In present work studied the AR(1) stochastic model with recurrent relations and
small “noise”. It is proved the estimate for exit times.
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1.Introduction

The present paper deals with a small stochastic perturbation of a nonlinear
one-dimensional dynamic system of the form

Xna1 = Toor (%0 ), % €[-L1],ne N (1.1)

where the map f:0 —»[-11] has a unique stable fixed point x;=0.An

interesting and well studied example is logistic family
f,(x)=ax(modl),«x €[0,1],xe(0,1) (see for instance {Collet Ekhmann On

iterated...}). This family was studied by dynamical renormalisation group method .
The renormalisation group method in dynamical systems first used by M.
Feigenbaum in his universality theory {see [7], [8]}. Notice that the many problems
of population theory of biology can be reduced to study the dynamical systems of
type (1.1) (see for instance [9]). To study the small stochastic perterbutions is one of
fundamental problems of the theory of stochastic persecutions of dynamical
systems (see [2], [4]).

An interesting problem is to investigate the exit time for a stochastic process
Y,,n>0.

Klebaner and Liptser in [1] proved a large deviationprinciple (LDP) for a class
of past-dependent models. As an example, they used the univariate

autoregressive process X!*),n>1 defined as
Xph = f (Xrgg))+8§n+1 (1.2)
where a contractive f(x) is continuous function on U' and ¢ is positive

parameter, {&,,n>1} isani.i.d. sequences of standard normal random variables.
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The process X!?) has a stationary distribution which is normal with mean0

and variance

1 > - Klebaner and Liptser showed that the family of processes X €

l1-a
obeys an LDP with rate of speed ¢* and rate function
(4) 1i(ut—aut_l)z, Uy = Xo,
(u)=12%F
o0, otherwise,

For each ¢ €(0,5,] we define the exit function by

z@

Klebaner and Liptser in [1] applying large deviationprinciple (LDP) proved
that

8) = min{n >1: ‘Xr(f)

- 2 1 2
!l_r)r%supg log E, 7 Sz(l—a )

G.Hognas and B.Jung in [6] investigated the estimates for the exit times in the
case some piecewise contractive function f.Also , it is proved for AR(1) with

contractive function f, (x):=ax*with parameter a < (0,1) the following bounds
H 2 1 2 . 1
!l_r)rg)supg log Exorgz(l—a ), if 0< a<5,
and
1 1 1

IimsupgzlogEXrSE ——— |, if =<a
-0 0 2la 432 2

In present work we study the stochastic sequence defined by past-dependent
recursion with small noise

sm( X,(f)j
2

where the parameters ¢>0,a€[01] and {&,,n>1} is an ii.d. sequence of

X =a

n+l + &1

X, =0.

standard Gaussian random variables with parameters (0,1).

Next we formulate the main result of our paper.
Theorem 1.1. Let £e(0,5] , ae(01) . Consider the stochastic sequence

{Xr(f) N> l} defined by (1.3) and the exit time 7z, = min {k :‘Xég)

> 1} . Then there exists

anumber 0< P, < % ,such that
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lims® logEz, <P,

&0

2. Large deviation principle for a past-dependent
stochastic process

Following Varadhan [3], family (X ) ... is said to satisfy the LDP in the metric
space (R : p) with the rate of speed q(¢) and the rate function J (u) if

(0) there exists a functionq(s) J =J(u),u =(u,,u,,...) € R” which takes values in

[0,0]such that for every a>0the set®(a)= {u eR”:J(u)< a} is compact in (D ‘”,pw);

(1) For every closed set F (D “, pw)

limg(e )IogP((X,ﬁ”)nZ ) —infJ(u);;

£—0 ueF

(2) For every open set G ( ,pw)

ﬂmq@ﬂmP«Xﬁ%zeG)-AMJ()

0 ueG

As was mentioned in Introduction, the LDP for {Xr(f) ,n> m} is implied by the

LDP for family & (¢ is a copy of ¢)).

In the work of F.K. Klebaner and R.Sh. Liptser [1] found sufficient conditions
for the existence of a LDP for the family¢, and these conditions are formulated

only in terms of the distribution . It is assumed that (see [1])
(C)
~E£=0
-Ee* <o, t e R “Cramer’s condition”.
(C2) With a cumulant functionH (t)=logEe* and the Fenchel-Legendre

L(v)=sup,[tv—H (t)], there exist a function q(z), decreasing to 0 as ¢4 0, and a
nonnegative function 1(v)=limq(s)L(v/¢),veR with properties:

-1(0)=0

-lim I (v)=o0

M—)oo

(Cs) IfI(v)<ofor some v, then t; =argmax (t! —H (t)j is finite and

iim 38y (t)=0

0 ¢
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We notice also that the Cramer condition implies H'(0)=0 and H"(t)>0and
left continity of 1(v) in a vicinity of v, =inf{v>0:1(v)=w} (correspondingly, right
continuity for v,<0).Klebaner F and Lipster R in [1] proved the following

theorem.
Theorem (see[1]).Assume (C1)- (Cs). Then:
1) the family {&&} = obeys to the LDP with rate of speed q(¢) and the

function 1(v) defined in (Cz);
2) the family {{g§}k21}HO obeys the LDP in the metric space (R, p) with

the rate function (y =(%,V,,...)eR” )

v)=2 (%)
k=1
3) the family {(X;j’)kzm }HO obeys the LDP in the metric space (R°°, p) with

the rate function (g = Uy Upy,e) € R°°)
3, (W)= e f(uikrlfwuw’Vk)I(vk), u =x,i=0,.,m-1
0, otherwise,
whereinf (&) =oo.
3. Proof of the Theorem 1.1
In the section we prove the Theorem 1.1.

Prove.By definition
f(x)=a

We find the infimum of the following rate function

l(yo,yl,---,vN)%i(yn ~ (o)) =%i(y" _asm(% y”‘ljjz

n=1 n=1

,0<a<l, xe[-11].

. T
sin—X
2

2
We consider the case N=2. Then $(y;)=y{ +(1~f (y1))" = ¥ +(1_asin(% VJJ
It is easy to see that

S'(y1)=2y1+2[1—asin(% ij(—acos[% ij%:

=2y, —aﬂcos(% yljtl— asin(% le =2y, —aﬂcos(% ylj +a? %sin(;ryl)

We have
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$(0)=1,S(1)=1+(1-a)" ,5'(0)=—ar ,S'(1)=2 (1.4)
We find the second derivative S"(y;):

S"(y1)= [Zyl - aﬁcos(% y1)+ a’® %sin(zyl)} =

2 2 2
T . T T T . T
=2+ a7sm(§ y1j+ a’ 7cos(7zy1) =2+ a—- [sm(z y1j+ acos(ﬂyl)] =

—2+a7[—2 sin| Zy, |+a| cos?| Zy, |-sin?| Z =
= > > Y1 > Y1 > Yi|||=
—2+a7T—2 sin| Zy, |-asin?[ Zvy, |+acos?| =

= 5 5 Y1 > Y1 > Y1

Since 0<a<land 0<y, <1, we have

. T . a .| .|
sm[E ylj— asin’ (E ylj = sm(z ylj[l—asm(z le >0,

Consequently,

S.(y1)>2, vae(0,1)and y, €[0,1] .

The last inequality shows that the function S,(y,) is convex up on interval
[0,1]. This , together with (1.4) i.e. initial values of S,(y;) and S,(y;) at baundary
points y; =0,y; =1. We get that there exists a point y, €(0,1) , such that,

P, =S, (xa) <1 .The theorem 1.1 completely proved.
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