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Introduction 

Let A  be an algebra (not necessary associative). Recall that a linear mapping 

:D A A  is said to be a derivation, if ( ) = ( ) ( )D xy D x y xD y  for all , .x y A  A 

linear mapping   is said to be a local derivation, if for every x A  there exists a 

derivation 
xD  on A  (depending on x ) such that ( ) = ( ).xx D x  

This notion was introduced and investigated independently by R.V. Kadison 

[11] and D.R. Larson and A.R. Sourour [12]. The above papers gave rise to a series 

of works devoted to the description of mappings which are close to automorphisms 

and derivations of C-algebras and operator algebras. R.V. Kadison set out a 

program of study for local maps in [11], suggesting that local derivations could 

prove useful in building derivations with particular properties. R.V.Kadison 

proved in [11, Theorem A] that each continuous local derivation of a von Neumann 

algebra M  into a dual Banach M -bimodule is a derivation. This theorem gave way 

to studies on derivations on C-algebras, culminating with a result due to B.E. 

Johnson, which asserts that every local derivation of a C-algebra A  into a Banach 

A -bimodule is automatically continuous, and hence is a derivation [7, Theorem 

5.3]. 

Let us present a list of finite or infinite dimensional algebras for which all local 

derivations are derivations: 

• C-algebras, in particular, the algebra ( )nM C  of all square matrices of order 

n  over the field of complex numbers [7, 11]; 

• the complex polynomial algebra [ ]xC  [11]; 

• finite dimensional simple Lie algebras over an algebraically closed field of 

characteristic zero [3]; 

• Borel subalgebras of finite-dimensional simple Lie algebras [18]; 

• infinite dimensional Witt algebras over an algebraically closed field of 

characteristic zero [5]; 

• Witt algebras over a field of prime characteristic [19]; 

• solvable Lie algebras of maximal rank [13]. 

https://doi.org/10.5281/zenodo.8411439
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On the other hand, some algebras (in most cases close to nilpotent algebras) 

admit pure local derivations, that is, local derivations which are not derivations. 

Below a short list of some classes of algebras which admit pure local derivations: 

• the algebra ( )xC  of rational functions [11]; 

• finite dimensional filiform Lie algebras [3]; 

• solvable Leibniz algebras with abelian nilradicals, which have a one 

dimensionial complementary space [2]; 

• the algebra of lower triangular n n -matrices [6]; 

• real octonion algebra [4]. 

2. Local derivations of metabelian filiform Lie algebras 

In this subsection we obtain a description of the space of all local derivations 

of rank zero solvable Lie algebras with filiform nilradical, namely with a so-called 

metabelian filifrom Lie radical. 

A non-abelian Lie algebra L  is called a metabelian, if [ , ]L L  is abelian, that is, 

(2) = 0.L  

We shall consider a metabelian filiform Lie algebra L  of dimension 7n   with 

a basis 
1{ , , }ne e  such that 

1 1 2 2 3

2 2

[ , ] = , 2 1, , ] = ,

3 3, , ] = .

i i i i i

n n

e e e i n e e e e

i n e e e

  



   

  
 

By [16, Proposition 3.2.5], any derivation D  on L  has the strictly lower 

triangular matrix 
,( )i jd  such that: 

2,1

1, 3,2

2,2 1,1 ,1

= 0,

= , 3 < ;

= 3 < 1< .

i i

ij i j i j i j

d

d d i n

d d d d j i n



    



   
 

Note that the numbers 
,i jd  (3 ,i j n  ) completely determined by ,1 ,2,k kd d  (

= 3, ,k n) and the space of all derivations Der( )L  has the dimension 2 4.n   

Theorem.  A linear mapping   on L  is a local derivation if and only if it has a 

strictly lower triangular matrix 
,( )i j  with 2,1 = 0.  

Proof. It is clear that any local derivation   on L  has a strictly lower triangular 

matrix 
,( )i j  with 2,1 = 0.  
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Let   be a such matrix. Take an arbitrary element 
=1

= .
n

i i

i

x e  Let 

=3

( ) = .
n

i i

i

x e   We need to find a derivation 
xD  such that ( ) = ( ).xx D x  

We shall consider the following possible two cases. 

Case 1. Let 
1 0.   Take 

3
3,1

1

4
4,1

1

,2

= ,

= ,

= 0, = 3, , .i

d

d

d i n








 (1) 

Further, for = 5, ,i n  the numbers ,1id  define as follows: 

1

,1 ,

=31

1
= ,

i

i i i j j

j

d d 


 
 

 
  (2) 

where 
1,1 ,1= ,3 < 1< .ij i j i jd d d j i n       Then 

1 1

, 3,1 1 3 4,1 1 4 ,1 1 ,

=3 =1 =5 =5 =3

( ) = =
n i n n i

x i j j i i i i j j i

i j i i j

D x d e d e d e d e d e    
 

      

1 1(1),(1)(2)

3 3 4 4 , ,

=5 =5 =3 =5 =3

=
n n i n i

i i i j j i i j j i

i i j i j

e e e d e d e    
 

       

=3

= = ( ).
n

i i

i

e x   

Case 2. Let 
1 1= = 0, 0,s s     where 2 1.s n    Then 

= 1

( ) = .
n

i i

i s

x e


   

Set 

,1

1
3,2 1,

= 0, = 3, , ,

= = , = 3, , 1

i

s
i i

s

d i n

d d i n




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and 
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1

2,2 ,

= 1

2,2

1
= , = 2, , ,

= 0, = 1, , 2,

i

i s i i j j
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 (4) 

where 

2,2= ,3 < 1< .ij i jd d j i n     (5) 

Then 
1 1

, ,

=3 =1 = 1 =

( ) = =
n i n i

x i j j i i j j i

i j i s j s

D x d e d e 
 



   

1

1, 1 , ,

= 2 = 2 = 1

=
n n i

s s s s i s s i i j j i

i s i s j s
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

 

  
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1(5)

1, 1 2,2 ,

= 2 = 2 = 1

=
n n i

s s s s i s s i i j j i

i s i s j s
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1 1(5)(3),(5)(3)(4)
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=
n n i n i

s s i i i j j i i j j i
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= 1
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n
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i s

e x
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The proof is complete. 
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