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 Abstract:. Two recently introduced quadrature schemes for weakly singular integrals are investigated in 
the context of boundary integral equations arising in the isogeometric formulation of Galerkin Boundary 
Element Method (BEM). In the first scheme, the regular part of the integrand is approximated by a 
suitable quasi–interpolation spline. In the second scheme the regular part is approximated by a product of 
two spline functions. The two schemes are tested and compared against other standard and novel 
methods available in literature to evaluate different types of integrals arising in the Galerkin formulation. 
Numerical tests reveal that under reasonable assumptions the second scheme convergences with the 
optimal order in the Galerkin method, when performing h-refinement, even with a small amount of 
quadrature nodes. The quadrature schemes are validated also in numerical examples to solve 2D Laplace 
problems with Dirichlet boundary conditions. 
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Introduction. Boundary Element Method (BEM) is a numerical technique to 

transform the differential problem into an integral one, where the unknowns are 

defined only on the boundary of the computational domain. The main two 

advantages of the method are the dimension reduction of the problem and the 

simplicity to treat external problems. As a major drawback, the integral formulation 

involves Boundary Integral Equations (BIEs), which contain singular kernel 

functions. Therefore, robust and precise quadrature formulae are necessary to 

provide an accurate numerical evaluation. The solution of the considered BIE is 

then obtained by collocation or Galerkin procedures. The isogeometric formulation 

of boundary element method (IgA-BEM) has been successfully applied to 2D and 

3D problems, such as linear elasticity, fracture mechanics, acoustic and Stokes 

flows. Recently, the IgA paradigm has been combined for the first time to the 

Symmetric Galerkin Boundary Element Method (IgA-SGBEM), which has revealed 

to be very effective among BEM schemes. Moreover, the full potential of B-splines 

over the more common Lagrangian basis has been recently exploited. In this work 

we frame the two quadrature procedures  in a Galerkin IgA-BEM for the 2D 

Laplace problem with Dirichlet boundary conditions. In particular, the derived 

quadrature formulae are obtained using a quasi–interpolation (QI) operator, firstly 
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introduced and then applied to construct quadrature rules for regular integrals. The 

second procedure has been successfully applied in a Galerkin adaptive BEM using 

hierarchical B-splines. The authors also provide some theoretical results about the 

convergence order of the quadrature rule, when h-refinement is performed. 

Materials. In this paper we experimentally test both procedures  for the 

regular and weakly singular integrals occurring in the Galerkin formulation. We 

compare the achieved accuracy with other quadratures available in literature and 

suitable for the evaluation of the assayed boundary integrals; namely the methods. 

Moreover, we recall some results about perturbed Galerkin BEM to provide an 

estimate for the asymptotic accuracy of the quadratures required to obtain the 

optimal order of convergence. 

Methods. The aim of this paper is to present a higher order predictor method 

for the numerical tracing of implicitly defined curves. This higher order predictor is 

described based upon the clamped cubic spline interpolation function using 

previously computed points on the curve to compute the coefficients via divided 

differences. Some applications are made to the numerical integration of closed 

implicitly defined curves. The line integral is approximated via a Gauss–Legendre 

quadrature of the interpolating function. 

Results. Numerical continuation (Path following) methods have long served 

as useful numerical tools in modern mathematics. They are techniques for 

numerically approximating a solution curve c which is implicitly defined by an 

underdetermined system of equations. There are various objectives for which the 

numerical approximation of c can be used. 

In the context of numerical continuation methods, one considers curves which 

are implicitly defined by an underdetermined system of equations 

(1)H(u)=0,where H:Rn+1→Rn is a smooth map. 

We shall mean that a map is smooth if it has as many continuous derivatives as 

the discussion requires. 

Let u0∈Rn+1 be a root of H such that the Jacobian matrix H′(u0) has maximal 

rank. Then it follows from the Implicit Function Theorem that the solution 

set H−1(0) can be locally parametrized about u0 with respect to some parameter, 

say s. We thus obtain the solution curve c(s) of the equation H(u)=0. 

If we take s to be the arclength, we obtain a smooth curve c:I→Rn+1 for some 

interval I containing zero, such that for all s∈I: 

(1) c(0)=u0; 

(2) H′(c(s))c.(s)=0; 

(3) ||c.(s)||=1; 

(4) detH′(c(s))c.(s)∗>0. 
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Here and in the following, B∗ denotes the Hermitian transpose of B, ||u|| the 

Euclidean norm of u, H′ the total derivative (the Jacobian) of H, and c· the derivative 

of c with respect to arclength. 

One of the important concepts which we use hereafter is the tangent 

vector induced by an n×(n+1) matrix with maximal rank. It is denoted by t(A) and is 

defined to be the unique vector t(A) in Rn+1 that satisfies the following conditions: 

(1) At(A)=0; 

(2) ||t(A)||=1; 

(3) detAt(A)∗>0. 

Since the solution curve c is characterized by the initial value problem 

(2)u·=t(H′(u)),u(0)=u0,it is evident that the numerical methods for solving 

initial value problems could be used to numerically trace c. However, in general 

this is not an efficient approach, since it ignores the strong contractive properties 

which the curve c has relative to corrector steps in view of the fact that it satisfies 

the equation H(u)=0. In fact, a typical path following method consists of a 

succession of two steps: 

Predictor step: An approximate step along the curve, usually in the general 

direction of the tangent of the curve. 

Corrector step: One or more iterative steps for solving H(u)=0 which bring the 

predicted point back to the curve. 

It is usual to call such procedures predictor corrector path following methods. 

Path following methods usually split into two main categories. The first one is 

to safely follow the curve as fast as possible, until a certain point is reached. In this 

category we will get fast results with less accuracy. The second category is to 

approximate the entire solution curve with some given accuracy. Siyyam and 

Syam, considered the first category by applying the Euler predictor and Gauss–

Newton–Corrector to trace an implicitly defined curve. Modified versions of the 

trapezoidal and Romberg rules were used to approximate line integrals over 

implicitly defined curves. The predictor was only of local order two. So, all of their 

numerical integration results were of order two. One may expect to obtain 

improved efficiency by using higher order predictors, especially when the solution 

curve needs to be approximated very well at all points. 

However, in higher dimensions Newton-type correctors may become 

expensive and hence in order to reduce the number of corrector steps and to allow 

larger predictor steps, it may be advantageous to use higher order predictors. 

One can use the Newton and the Hermite interpolation techniques as a 

predictor. These techniques concerned the approximation of a portion of the 

solution curve by a polynomial. However, the oscillatory nature of high-degree 

polynomials and the property that a fluctuation over a small portion of the curve 

can induce large fluctuations over the solution curve restricts their use. 
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Now, assume that A is an n×n strictly diagonally dominant and tridiagonal 

matrix. Then, A is a nonsingular matrix which implies that the linear system 

of n equations and n unknowns Ax=b has a unique solution. In this case we will use 

the Crout Factorization Algorithm for tridiagonal linear system. 

Since the Crout factorization algorithm requires only (5n−4) multiplications 

and divisions and (3n−3) additions and subtractions, we will use it in this paper. 

Assume that the points u0,u1,…,um along the solution curve c have already 

been generated. There are many ways to generate the first m points if u0 is given. 

One can use multistep methods or Runge–Kutta methods of high order to be 

suitable to the order that we use in the interpolation. We cannot use the Euler 

predictor, because it is of order two and if we were to loose the accuracy at any 

point, it would effect the entire result. Assume that the corresponding 

tangents t0=t(H′(u0)),…,tm=t(H′(um)) are computed. For more details how to compute 

them. 

The idea is to use a cubic spline interpolating function pq(h) using the 

points um,um−1,…,um−q where q⩽m, with coefficients in Rn+1, satisfying pq(0)=um as a 

predicting function. In this case, we say that pq(h) has order q. The main issue is to 

express the interpolating function in terms of a suitable parameter ξ. Lundberg and 

Poore [4] showed that the arclength is the ideal parameter to use. This will give 

additional complexity of obtaining precise numerical approximations of the 

arclength si such that c(si)=ui. For this reason, we use a local 

parametrization ξ induced by the current approximate tangent t≈t(H′(um)), which 

does not need to be very accurate. We assume the normalization ||t||=1 holds. 

This local parametrization c(ξ) is defined as the locally unique solution of the 

system(3)H(u)=0,t∗(um+ξt−u)=0for ξ in some open interval containing zero. It 

follows that(4)c(ξi)=ui,whereξi=t∗(ui−um). 

By differentiating c(ξ) with respect to ξ and using (3), we 

obtaindc(ξ)dξ=c (s)t∗c (s). 

We should mention that we have two different types of derivative for c. The 

first one is the derivative with respect to the arclength which is denoted by c  (s). In 

this paper, we use the first derivative only with respect to the arclength. The second 

type is the derivative with respect to ξ. The notation for these derivatives are 

dc(ξ)/dξ=c′(ξ), c″(ξ), c(3)(ξ),…,c(m)(ξ). 

If the tangents ti at the points ui are available for use, we can form the clamped 

cubic spline interpolating function pq. 

The clamped cubic spline function pq(h) satisfies the following conditions: 

(a) 

pq(h) is a cubic polynomial, denoted by Sj
q(h), on the subinterval [ζj,ζj+1] for 

each j=m−q:m−1. 

(b) 

https://www.sciencedirect.com/science/article/pii/S0377042703004114#BIB4
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pq(ζj)=c(ζj) for each j=m−q:m. 

(c) 

Sj+1q(ζj+1)=Sj
q(ζj+1) for each j=m−q:m−2. 

(d) 

Sj+1q′(ζj+1)=Sj
q′(ζj+1) for each j=m−q:m−2. 

(e) 

Sj+1q″(ζj+1)=Sj
q″(ζj+1) for each j=m−q:m−2. 

(f) 

pq′(ζm−q)=c′(ζm−q) and pq′(ζm)=c′(ζm). 

where ξi and c[ξi] are as given in (4) and c′[ξi]=ti/(t∗ti). 

To construct the clamped cubic spline interpolant for c(ζ), the conditions (a)–(f) 

are applied to the cubic polynomialsSjq(h)=aj+bj(h−ζj)+cj(h−ζj)2+dj(h−ζj)3for 

each j=m−q:m−2. From condition (b), we see that pq(ζj)=Sj
q(ζj)=c(ζj) which implies 

thataj=c(ζj)=ujforeachj=m−q:m−1.Simple calculations give us the following linear 

system(5)Ax=b,whereA=2hm−qhm−q0⋯⋯0hm−q2(hm−q+hm−q+1)hm−q+1⋮0hm−

q+12(hm−q+1+hm−q+2)⋱⋮⋮⋱⋱⋱⋱⋮⋮⋱⋱⋱0⋮hm−22(hm−2+hm−1)hm−10⋯⋯0hm−12h

m−1,b=3hm−q(am−q+1−am−q)−3c′(ζm−q)3hm−q+1(am−q+2−am−q+1)−3hm−q(a

m−q+1−am−q)⋮3hm−1(am−am−1)−3hm−2(am−1−am−2)3c′(ζm)−3hm−1(am−am−1)

andx=cm−qcm−q+1cm−q+2⋮cm. 

In the linear system (5), hj=ζj+1−ζj, for each j=m−q:m−1. 

Since A is strictly diagonally dominant, the linear system has a unique solution 

for cm−q, cm−q+1,…,cm. From condition (e), we see that2cj+1=2cj+6djhjwhich implies 

thatdj=cj+1−cj3hjfore chj=m−q:m−1.From condition (c), we 

have aj+1=aj+bjhj+cjhj
2+djhj

3 which implies 

thatbj=aj+1−ajhj−cjhj−djhj2=aj+1−ajhj−hj3(2cj+cj+1)for each j=m−q:m−1. 

We should note that the linear system is tridiagonal system and A is strictly 

diagonally dominant. Thus, we will use the Crout factorization for solving this 

system. 

Now a general philosophy for monitoring the order and steplength of higher 

order predictors is presented. To do this, let un be a current point on the solution 

curve c which can be locally parametrized via the parameter s, and assume 

that c(0)=un. For a cubic spline of order q, consider a polynomial predictor of the 

formc(h)≈Sjq(h)=uj+∑i=14ci,jhi,ξj⩽h⩽ξj+1,(6)ci,j≈c(i)(ξj)i!which represents an 

approximation via the Taylor formula. For more details, how can we write. In fact, 

there are two different ways for obtaining the coefficients ci,j. 

(1) By polynomial interpolation making use of previously calculated points on 

the curve. 

(2) By successive numerical differentiation at un. 

The former is less expensive to calculate, and it is the approach which will be 

presented in this paper. 

https://www.sciencedirect.com/science/article/pii/S0377042703004114#EQ4
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One way for determining the next steplength and the next order in the 

predictor is given below. Let tol>0 be a given tolerance. The term ||c4,j||h4 can be 

viewed as a rough estimate for the truncation error of the predictor pq−1(h) in the 

interval [ξj,ξj+1]. Hence, by solving ||c4,j||h4=tol for h, we 

get(7)hj(q)=tol||c4,j||1/4.Let hq=max{hj
(q):m−q⩽j⩽m−1}. Choose hq as the 

steplength for the predictor pq−1(h) in order to remain within the given tolerance. 

Due to instabilities of various kinds, we anticipate that 

eventually(8)h2<h3<⋯<hl⩾hl+1,will hold for some l. Thus, the predictor pl−1 with 

steplength hl is our next choice. 

One of the interesting cases for the line integral is the integration over a closed 

curve. In order to handle this case for an implicitly defined curve, it is necessary to 

develop a reliable numerical method for determining when the curve has been 

completely traversed. Siyyam and Syam developed such stopping criteria. We have 

implemented that stopping criterion along with the clamped cubic spline higher 

order predictor and tested many different examples. The results we have obtained 

indicate that it works nicely and efficiently. 

In this example we took the maximum degree of any clamped cubic spline 

interpolating function to be eight. Moreover, we have calculated the sum of all 

stepsizes from the steplength control h1, h2,…,hn−1 where n is the number of points 

generated along the solution curve until the stopping criterion is satisfied, along 

with the corresponding predictor's degrees q1, q2,…,qn−1, and we define Sk to 

be Sk=∑i=1khi for k=1:n−1. We have sketched the graphs of hk against Sk, and the 

graphs of qk against Sk for k=1:n−1 for the tolerances 10−6, 10−9, and 10−12, 

respectively. 

In Example (1), we choose a symmetric curve which is an ∞-Shape. If the 

arclength control (8) is satisfied at all points along the solution curve, two 

conditions must hold. 

Conclusion. A study of the two recently introduced spline quasi–interpolation 

quadrature schemes is performed in the context of boundary integral equations in 

Galerkin IgA-BEM. A comparison of the accuracy of the schemes was already done, 

when considering singular integrals. The analysis with respect to the amount of 

employed quadrature nodes revealed the optimal order of convergence for both 

approaches. In the present paper, numerical tests show a notable difference 

between the two schemes. For a fixed amount of quadrature nodes the accuracy of 

the considered integrals is examined, when performing h-refinement of the 

approximation space. The observed rate of convergence is optimal only for the 

second scheme. In the numerical simulations for the 2D Laplace problems, the 

optimal order of convergence of the approximate solution is achieved with a small 

number of quadrature nodes, when the second procedure is employed. Regarding 

the first procedure, the amount of nodes should be increased to recover the optimal 

https://www.sciencedirect.com/science/article/pii/S0377042703004114#EQ1
https://www.sciencedirect.com/science/article/pii/S0377042703004114#EQ8
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order for all the h-refinement steps. In the future work we would like to investigate 

quadrature schemes for integrals of higher order singularities for more complex 

differential problems. A valuable contribution would be to derive stable formulae 

for the modified moments to simplify the construction of the proposed methods. 
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