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Abstract 

In present work studied the AR(1) stochastic model with recurrent  relations and 

small “noise”. It is proved the estimate for exit times. 
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1.Introduction 

The present paper deals with a small stochastic perturbation of   a nonlinear 

one-dimensional dynamic system  of the form 

   1 1 0, 1,1 ,n n nx f x x n N        (1.1) 

where the map  : 1,1f     has a unique stable fixed point 0 0x  .An 

interesting and well studied example is logistic family  

       mod1 , 0,1 , 0,1f x x x      (see for instance {Collet Ekhmann On 

iterated…}). This family was studied by dynamical renormalisation group method . 

The  renormalisation  group method in dynamical systems first used by M. 

Feigenbaum in his universality theory {see [7], [8]}. Notice that the many problems 

of population theory of biology can be reduced to study  the dynamical systems of 

type (1.1) (see for instance [9]). To study the small stochastic perterbutions is one of 

fundamental problems of the theory of stochastic persecutions of dynamical 

systems (see [2], [4]). 

An interesting problem is to investigate the exit time for a stochastic process 

, 0.nY n   

Klebaner and Liptser in [1]  proved a large deviationprinciple (LDP) for a class 

of past-dependent models. As an example, they used the univariate 

autoregressive process ( ) , 1nX n   defined as 

 ( ) ( )
11 n nnX f X

          (1.2) 

where a contractive  f x  is continuous function on 1  and   is positive 

parameter,  , 1n n    is an i.i.d. sequences of standard normal random variables. 
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The process ( )
nX   has a stationary distribution which is normal with mean 0

and variance  
2

1

1 a
. Klebaner and Liptser showed that the family of processes ( )

nX   

obeys an LDP with rate of speed 2  and rate function 

 
 

2

1 0 0

1

1
, ,

2

, ,

t t

t

u au u x
I u

otherwise








 

 




  

For each  00,   we define the exit function by 

    : min 1: 1nn X
 

     

Klebaner and Liptser in [1] applying  large deviationprinciple (LDP) proved 

that 

 
0

2 2

0

1
lim sup log 1

2
xE a


 


  . 

G.Hognas and B.Jung in [6] investigated the estimates for the exit times  in the 

case some piecewise contractive function f .Also , it is proved for AR(1) with 

contractive function   2:af x ax with parameter  0,1a the following bounds 
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In present work we study  the stochastic sequence defined by past-dependent 

recursion with small noise 

   
11

0

sin ,
2

0.

ε ε
n n+n+

π
X = a X εξ

X =

  
  

 

  
where the parameters  0, 0,1a    and   , 1n n    is an i.i.d. sequence of 

standard Gaussian  random variables with parameters (0,1). 

 

Next we formulate the main result of our paper. 

Theorem 1.1. Let  00,   ,  0,1a  . Consider the stochastic sequence 

 ( ) , 1nX n   defined by (1.3) and the exit time  ( )
min : 1a kk X

    . Then there exists 

a number 
1

0
2

aP   ,such that 
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2

0
lim log a aE P


 


  

 

2. Large deviation principle for a past-dependent 

stochastic process 

Following Varadhan  [3], family  
k m

X 


 is said to satisfy the LDP in the metric 

space  ,R   with the rate of speed  q   and the rate function  J u  if 

(0) there exists a function  q   J J u ,  1 2, ,...u u u R   which takes values in 

 0, such that for every 0  the set     :u R J u     is compact in  , 
 ; 

(1) For every closed set  ,F 
  

      ( )

0
lim log inf ;n n m u F

q P X F J u




 
   ; 

(2) For every open set  ,G 
  

      ( )

0

lim log infn n m u G
q P X G J u




 

   . 

As was mentioned in Introduction, the LDP for  ( ) ,nX n m   is implied by the 

LDP for family   (  is a copy of 
n ). 

In the work of F.K. Klebaner and R.Sh. Liptser [1] found sufficient conditions 

for the existence of a LDP for the  family , and these conditions are formulated 

only in terms of the distribution . It is assumed that (see [1]) 

(C1) 

- 0E   

- ,tEe    t R  “Cramer’s condition”. 

(C2) With a cumulant function   log tH t Ee   and the Fenchel-Legendre 

   supt RL v tv H t    , there exist a function  q  , decreasing to 0 as 0  , and a 

nonnegative function      
0

lim / ,I v q L v v R


 


   with properties: 

-  0 0I   

-  lim
v

I v


  

(C3)  If  I v   for some v , then  arg maxv

v
t t H t



 
  

 
 is finite and 

 
0

lim v

q
t






 va  2

0
lim '' 0vH t
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We notice also that the Cramer condition implies  ' 0 0H   and  '' 0H t  and 

left continity of  I v  in a vicinity of   0 inf 0 :v v I v     (correspondingly, right 

continuity for 
0 0v  ).Klebaner F and Lipster R in [1] proved the following 

theorem. 

Theorem (see[1]).Assume  (C1)- (C3). Then: 

1) the family  
0




 obeys to the LDP with rate of speed  q   and the 

function   I v  defined in (C2); 

2) the family   1 0k 


 
 obeys the LDP in the metric space  ,R   with 

the rate function    1 2, ,...v v v R  . 

   
1

k

k

I v I v






 ; 

3) the family   
0

k k m
X 

 
obeys the LDP in the metric space  ,R   with 

the rate function    1, ,...m mu u u R

   

   
 

1: ,... ,
inf , , 0,..., 1
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k k k k m k

k i i
v u f u u v
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otherwise

 



 


  

 




  

where  inf    . 

3. Proof of the Theorem 1.1 

In the section we prove the Theorem 1.1. 

Prove.By definition 

  sin
2

f x a x


  , 0 1a   ,  1,1x   . 

We find the infimum of the following rate function 
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We consider the case 2N  . Then     
2

22 2
1 1 1 1 11 1 sin

2
S y y f y y a y

  
        

  
 

It is easy to see that 
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We have 
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 0 1S   ,    
2

1 1 1S a    ,  ' 0S a   ,  ' 1 2S              (1.4) 

We find the second derivative 1''( )S y : 
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Since 0 1a  and 10 1y   , we have 

2
1 1 1 1sin sin sin 1 sin 0

2 2 2 2
y a y y a y

           
           

        
 , 

Consequently, 

 ''
1 2aS y   ,  0,1a  and  1 0,1y   . 

The last inequality shows that the function  1aS y  is convex up on interval 

 0,1 . This , together with (1.4) i.e. initial values of  1aS y  and  '
1aS y  at baundary 

points 1 10, 1y y  . We get that there exists a point  0,1a   , such that , 

  1a a aP S    .The theorem 1.1 completely proved. 
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