
International Journal of Education, Social Science & Humanities.
Finland Academic Research Science Publishers
ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11| Issue-11| 2023 Published: |22-11-2023|

670 Publishing centre of Finland

OPENCV LIBRARY IN PAYTON AND COMPARATIVE ANALYSIS OF THE

METHODOLOGY OF USE IN COMPUTER VISION

https://doi.org/10.5281/zenodo.10138625

D.A.Khalilov

Fergana branch of TUIT named after Muhammad al-Kharizmi, Professor of

"Information Technology", Ph.D.,

Introduction

In this article, we will learn how to use the OpenCV library in Python.

OpenCV is an open-source library supporting many platforms including

Windows, MacOS and Linux. This library also exists for many programming

languages. But most often it is used to write machine learning applications in

Python, especially in the field of computer vision.

In addition to being cross-platform and supporting many programming

languages that allow applications to be used on various systems, the OpenCV

library is very efficient (compared to other similar libraries) in terms of calculations,

since almost all functions and operators in it are vectorized.

In this article, we will teach you how to install the OpenCV library on

Windows, MacOS and Linux platforms. We will also talk about image operations,

image arithmetic, image smoothing and geometric image transformations using the

OpenCV library. Let's get started!

Library installation

Note: since we are considering using the OpenCV library for the Python

language, it is implicitly assumed that you already have Python (version 3)

installed. To install the OpenCV library, run one of the following commands,

depending on your operating system.

Windows

$ pip install opencv-python

macOS

$ brew install opencv3 --with-contrib --with-python3

linux

$ sudo apt-get install libopencv-dev python-opencv

To check the installation result, simply enter the following command in the

Python terminal:

https://doi.org/10.5281/zenodo.10138625

International Journal of Education, Social Science & Humanities.
Finland Academic Research Science Publishers
ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11| Issue-11| 2023 Published: |22-11-2023|

671 Publishing centre of Finland

import cv2

If no error message appears, then the library was installed successfully.

Basic Image Operations

Having installed OpenCV, let’s now, so to speak, feel the main functionality of

this library.

Screen output

The process of displaying an image on the screen consists of two steps. First,

we have to load the image and then display it on the screen. These operations are

performed sequentially, and a separate function is assigned to each of them.

To display an image on the screen, we need to set two things:

1. Path to the file containing the image (both relative and absolute paths will

do).

2. File read mode (read only, write, etc.).

The function with which we read the image is called cv2.imread(). She has

three modes of operation. The first one is IMREAD_GRAYSCALE. As the name

suggests, it converts an image to black and white with grayscale. The second one is

IMREAD_UNCHANGED, it loads the image without clipping the alpha channel.

And the third one, used by default, is IMREAD_COLOR. It simply loads a color

image using the RGB channels.

Here is an example code:

import cv2

my_bike = cv2.imread(‘bike.png’)

Thus, we load the bike image from the bike.png file and save it to the my_bike

variable for further work.

Note: If this code resulted in an error, there are only three possible reasons for

this. The first is that you incorrectly set the path to the file. The second is that such a

file simply does not exist, and the third is that the image type (jpg/jpeg/png) is set

incorrectly.

Now let’s display the image we just loaded on the screen. For this, the

cv2.imshow() function is used. If you have used Matlab, you should be familiar

with how it works.

cv2.imshow(‘my_bike’, my_bike)

The first parameter of the imshow() function is the string we want to use as the

caption for our image. The second parameter is a variable containing the image we

uploaded.

Saving images

International Journal of Education, Social Science & Humanities.
Finland Academic Research Science Publishers
ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11| Issue-11| 2023 Published: |22-11-2023|

672 Publishing centre of Finland

To save the results of our work with images in the OpenCV library, there is a

cv2.imwrite() function.

Here is an example of its use:

cv2.imwrite(‘bike.png’, my_bike)

Here we set the name of the file and the variable that contains the image. It

will be saved to the current working directory.

Image arithmetic

Image arithmetic includes addition, subtraction, division, and multiplication

of various images and is used to obtain a new image by arithmetic operations on

input images. Image arithmetic has many practical applications, such as

watermarking an image, blending two images, applying various filters to images,

and so on.

Of the many possible operations, we will consider only two examples that will

help us understand the concept of arithmetic operations in the OpenCV library. As

the first example, we will take the addition of two images, and as the second, their

blending (blending).

Let's look at the code for these examples.

Image stacking

import cv2

Read two images

image_1 = cv2.imread('bike.jpg')

image_2 = cv2.imread('car.jpg')

Sum the arrays of two images across all channels

result = cv2.add(image_1, image_2)

cv2.imshow('result', result)

cv2.waitKey(0)

cv2.destroyAllWindows()

The waitkey command is used to stop code execution until any key on the

keyboard is pressed. This is very convenient, because otherwise the image

displayed on the screen would only flash on the screen for a fraction of a second,

and then the program would complete its execution.

Blending Images

Blending images is very similar to adding them, except that now we can

control the contribution of each of the input images to the resulting image. In

general, if we want one of the input images to be more contrasty and the other to be

blurrier when they are merged, we should use blending instead of image stacking.

To clarify this, let's look at the code:

International Journal of Education, Social Science & Humanities.
Finland Academic Research Science Publishers
ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11| Issue-11| 2023 Published: |22-11-2023|

673 Publishing centre of Finland

import cv2

Read two images

image_1 = cv2.imread('bike.jpg')

image_2 = cv2.imread('car.jpg')

result = cv2.addWeighted(image_1, 0.9, image_2, 0.1)

cv2.imshow('result', result)

cv2.waitKey(0) # Program stops until any key is pressed

cv2.destroyAllWindows()

The sum of the weights passed to the cv2.addWeighted() function must equal

1. You can also pass a scalar value to the function at the end, which will be added to

the value of each pixel in the resulting image.

Note: images can be of any type, but the type of all images must be the same.

For example, if you use the PNG format, then all images must be in this format.

Image smoothing

Image smoothing is an extremely useful operation and is very often used

before passing an image to a machine learning model for processing. Basically, this

should be done to filter out high-frequency noise, using a low-pass filter for this.

There are many different filters, such as the averaging filter (box filter), median

filter (median filter), wave type filter (mode filter), Gaussian filter and many others.

But in order to understand image smoothing and its application in the OpenCV

library, we will consider only the first, averaging filter (box filter).

Let's say you have a 10X10 image and want to run it through a 3X3 averaging

filter. How will you act?

We'll start at the far left of our image, place a 3x3 filter there, and replace the

center element with the average of all nine elements (the sum of the elements that

hit the filter divided by 9). This will only be the first step. Next, we will move the

filter one step to the right and repeat this procedure. This example is illustrated

below.

Filter or mask:

Applying a filter to a 10X10 image:

Let's now see how we can organize image filtering using the OpenCV library.

Please carefully read all the comments for each line of this code.

import cv2

Load initial image

original_image = cv2.imread('my_bike.png')

International Journal of Education, Social Science & Humanities.
Finland Academic Research Science Publishers
ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11| Issue-11| 2023 Published: |22-11-2023|

674 Publishing centre of Finland

Filtering the image with a 3X3 averaging filter

average_image = cv2.blur(original_image,(3,3))

Apply Gaussian filter to original image

gaussian_image = cv2.GaussianBlur((original_image,(3,3),0))

Apply median filter to original image

median_image = cv2.medianBlur(original_image,3)

To see the result on the screen, run the following helper code:

import matplotlib.pyplot as plt

plt.imshow(average_image)

plt.show()

Image conversion.

The last, but one of the most important topics we raised in this review of the

OpenCV library is image transformation. This topic is used in a variety of

applications, but the problem of data augmentation for machine learning models

should be mentioned separately. We are talking about situations where there is not

enough data in our dataset for full-fledged training, and we, supplementing and

modifying existing pictures, increase the initial dataset to the desired size. This

helps us to seriously increase the accuracy of the trained model.

The list of possible transformations is very long and includes scaling, image

affine transformation, rotation, transposition and much more. We will briefly cover

only scaling and rotation, but the OpenCV library has support for all possible

transformations. Let's start with scaling.

Scaling.

Simply put, scaling is nothing more than resizing an image, making it larger or

smaller. In the OpenCV library, there is a resize function for this. This function, in

turn, has three methods: INTER_CUBIC, INTER_LINEAR and INTER_AREA. Let's

take a look at a specific code example and see how it all works. Please carefully

study the code, comments to it and the description below.

import cv2

import numpy as np

import matplotlib.pyplot as plt

image = cv2.imread('my_bike.jpg')

Zoom in/expand 2 times in width and height

result_1 = cv2.resize(image, None, fx=2, fy=2,

interpolation=cv2.INTER_CUBIC)

International Journal of Education, Social Science & Humanities.
Finland Academic Research Science Publishers
ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11| Issue-11| 2023 Published: |22-11-2023|

675 Publishing centre of Finland

Zoom out/shrink 2 times in width and height

result_2 = cv2.resize(image, None, fx=2, fy=2,

interpolation=cv2.INTER_AREA)

Display the resulting images

plt.imshow(result_1)

plt.imshow(result_2)

plt.show()

Here, in the resize function, the fx parameter determines the scale of changes

in width, fy - in height, and the interpolation parameter is responsible for the

method of changes itself (that is, expansion or contraction).

Rotation

Rotation allows us to move the image around a certain axis by a given angle.

Before we learn how to rotate our images using the OpenCV library, let's

remember that there is a linear operator called the rotation matrix, which just

performs this kind of transformation. We will not go into mathematical details,

since in the OpenCV library this matrix is calculated with a single function call. You

will see this in the following code:

import cv2

import matplotlib.pyplot as plt

Upload the bike image

image = cv2.imread('my_bike.jpg',0)

rows and columns

r, c = image.shape

matrix = cv2.getRotationMatrix2D((cols/2,rows/2), 180, 1)

result = cv2.warpAffine(image,matrix,(c,r))

Display the rotated image

plt.imshow(result)

plt.show()

In the getRotationMatrix2D function, 180 is the angle by which our image

should be rotated, 1 is the scale factor. This function returns the rotation matrix,

which is stored in the matrix variable.

Next, the warpAffine function, using the rotation matrix calculated in the

previous step, rotates our image in accordance with the specified specification.

Conclusions

International Journal of Education, Social Science & Humanities.
Finland Academic Research Science Publishers
ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11| Issue-11| 2023 Published: |22-11-2023|

676 Publishing centre of Finland

Summing up, let's once again go through the most important places in our

article. The OpenCV library is available in many languages and is often used in

conjunction with the NumPy, SciPy and Matplotlib libraries, as we have seen in the

examples. Some library functions are taken from Matlab and also support vector

calculations, which greatly improves computational efficiency.

Also, OpenCV is one of the best libraries for computer vision and after reading

this article, you will be able to find many machine learning applications that have

been developed using OpenCV.

It should also be said that this article reveals only a very small part of what is

in the OpenCV library. Reading it should inspire you to dive even deeper into this

library and learn about the many other advanced features in it.

REFERENCES:

1. OpenCV library [Electronic resource]. – Access mode: https://opencv.org/.

2. Xalilov, D. Сунъий интеллект ва радиал нейрон тармоқларнинг

математик асослари. Science and innovation, 1(A6), 664-671.

3. Khalilov, D. A., Jumaboyeva, N. A. K., & Kurbonova, T. M. K. (2021).

Advantages and Applications of Neural Networks. Academic research in

educational sciences, 2(2), 1153-1159.

4. Kolesnik A. V., Ladyzhensky Yu. V. Distributed face recognition system

based on geometric characteristics [Electronic resource] // DonNTU Masters

Portal. – Access mode:

http://masters.donntu.org/2010/fknt/kolesnik/library/index.htm.

5. D.A.Khalilov Lecture notes. FF TUIT.2020.

