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Below, we will consider how the basic concepts of arithmetic, natural numbers 

and zero, and the concepts of arithmetic operations performed on them are 

introduced using set theory. 

If it is possible to establish a one-value correspondence between sets A and B, 

these sets are said to be of equal strength and written in the form A~B. 

Since the relation "equivalence" is reflexive and transitive, it is an equivalence 

relation and divides all finite sets into equivalence classes. Each class consists of 

collections of different elements, the common property of which is that they are of 

equal strength. 

A general property of the class of non-empty, finite, even-powered sets is 

called a natural number. 

A general property of each equivalence class is fully expressed by one of its 

sets. A natural number representing each class property is designated by a separate 

symbol. The number a defined by a set A is called the power of this set and is 

written as a = n(A). For example, the number 3 represents a common property of 

the class of sets with three elements, and it is defined by any set of this class. 3 

natural numbers of the class of equivalent sets A={a;b;c}, B = {red, yellow, green}, C 

= {□; ∇; ○} can be identified by showing its representatives. 

We form a set that is not equivalent to the given set by adding an element that 

does not belong to each finite set. Continuing this process, we form an infinite 

sequence of mutually non-equivalent sets and a sequence of natural numbers 
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defined by these sets in the form 1, 2, 3, n, .... The set of all natural numbers N= {1; 

2; 3; ...} we come to write in the form. 

The general property of the class of empty sets is called the number 0, 0= n(∅). 

The number 0 and all natural numbers together form the set of non-negative 

integers. This set is denoted as   .     = {0}∪N. Here, N is the set of all natural 

numbers. Or else    ={0;1;2;3;…} 

Comparison of non-negative integers. Let's find out on what theoretical basis 

the comparison of numbers occurs. Let two non-negative integers a and b be given 

and defined by finite sets A and B. 

If the numbers a and b are determined by sets of equal power, then they are 

called equal. 

a = b ⇔ A ~ B, where n(A) = a; n(B) = b. 

If sets A and B are not of equal power, then the numbers determined by them 

will be different. 

If the set A is equal to the set of characteristic parts of the set B and n(A) = a; If 

n(B) = b, the number a is said to be less than the number b and is written as a < b. In 

the same situation, the number b is said to be greater than the number a and is 

written as b > a. 

a < b⟺A ~ B1, where B1⊂B and B1≠B,B≠∅. 

Arithmetic operations on non-negative integers. Every operation performed 

on sets corresponds to operations on numbers defined by these sets. For example, a 

set C consisting of the union of non-intersecting sets A and B determines a number 

c, which is called the sum of non-negative integers a and b defined by sets Ava B. 

n(A)=a is the sum of non-negative integers a and b; n(B)=b is the number of 

elements in the union of non-intersecting sets A and B. 

a + b = n(A∪B), where n(A) = a; n(B) = b and A∩ B =∅. 

Using the given definition, we explain that 5 + 2 = 7. 5 is the number of 

elements of a set A, 2 is the number of elements of a set B, in which their 

intersection should be an empty set. For example, A = {x; y; z; t; p}, B= {a; b} we get 

sets. We combine them: A∪B = {x; y; z; t; p; a; b}. By counting, we determine that 

n(A∪B) = 7. So 5 + 2 = 7. 

In general, the sum a + b does not depend on the selection of non-intersecting 

sets A and B satisfying the condition n(A)=a, n(B)=b. We accept this general claim 

without proof. 

The difference of non-negative integers a and b is called the number of 

elements of the set that completes the set B up to the set A when the conditions 

n(A) = a, n(B) = b and B⊂A are fulfilled. 
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a - b = n(  
 ), where a = n(A),b = n(B), B⊂A. 

Miso1. Using the given definition, we explain that 7-4 = 3. Let 7 be the number 

of elements of some set A, 4 be the number of elements of set B, which is a subset of 

this set A. For example: A = {x; y; z; t; p; r,s}, B = {x; y; z; Let us take the sets t}. We 

find the complement of set B to set A:   
 = {p; r; s}, n(  

  = 3. So, 7-4 = 3. The 

difference a - b does not depend on the selection of sets A and B satisfying the 

conditions n(A) = a, n(B) = b and B⊂A. 

Let a = n(A), b = n(B) and B⊂A be given nonnegative integers a and b, and let 

the difference of these numbers be the number of elements in the complement of set 

B to set A, or is a - b = n(  
 ) 

In Euler circles, the sets A, B, A\B are represented as shown in the figure. It is 

known that A = B∪   
 , from which n(A)=n(B∪  

 ). Since B∩  
 = ∅, we have a = 

n(A)= n(B∪  
 )= n(B) +n(  

 ) = b + (a-b) 

 

 

 

 

 

 

 

 

 

 

Let a and b be non-negative integers such that a = n(A) and b = n(B). 

A and b are the product of non-negative integers, and c is a non-negative 

integer representing the number of elements of the Cartesian product A×B. Here 

A×B= {(a,b) | Let's mention that a∈A,b∈B}. So, by definition: 

a∙b = n(A×B) = c, where a, b, c∈N0, 

In the notation a∙b = c, a is the 1st multiplier, b is the 2nd multiplier, c is the 

multiplication, and the operation of finding the number c∈   is called 

multiplication. 

For example, let's find the product 5 • 2 according to the definition. For this, A 

= {a; b; c; d; e}, B = {1; 2} we construct the Cartesian product of sets: 

A×B={(a; 1), (a; 2), (b; 1), (b; 2), (c; 1), (c; 2), (d; 1), (d; 2), (e; 1), (e; 2)}. Since the 

number of elements of the Cartesian product is 10, 5∙2= 10. The concept of dividing 

the set into classes is used to describe the operation of division in the set of non-

negative integers. 

A 

B 𝐵𝐴 
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Let the set A with power equal to a be divided into classes of equal power. 

If the number b is the number of partitions in the partition of the set A, then 

the partition of a and b is a non-negative integer, and the number of elements in 

each partition is called c. 

If the number b is the number of elements of each partition in the division of 

the set A into classes, then a and b are the division of numbers, and the number of 

partitions is called c. 

The operation of finding the division of non-negative integers a and b is called 

division, a is a divisor, b is a divisor, and a : b is a division. According to the 

definition of being, questions about being are divided into two types: 

1) to be according to the content; 2) division into equal parts. 

Type 1 problem: If 48 pencils are packed in 6 boxes, how many pencils are in 

each box? 

Type 2 problem: If 48 pencils are packed in boxes of 6, how many boxes are 

needed? 
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