

ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11 | Issue-12 | 2023 Published: |22-12-2023 |

ИЗУЧЕНИЕ ХИМИЧЕСКОГО СОСТАВА ШЛАКА, ОБРАЗУЮЩЕГОСЯ ПРИ ВЫПЛАВКЕ МЕДНЫХ ШИХТОВ

https://doi.org/10.5281/zenodo.10437256

Директор, д.т.н., профессор **Camaдoв A.Y.**Алмалыкский филиал ТГТУ им. И.Каримова, <u>a.samadov@tdtuof.uz</u>
Старший преподаватель **Ахмедова Н.Э.**Алмалыкский филиал ТГТУ им. И.Каримова, <u>nigora071118@gmail.com</u>
Ассистент **Жалолов Б.А.**

Алмалыкский филиал ТГТУ им. И.Каримова, jalolovbaxtiyorjon319@gmail.com

Аннотация

В ЭТОМ СТАТЬЕ ИЗУЧЕНО ХИМИЧЕСКИХ СОСТАВ ШЛАКОВ ОБРАЗУЮЩИХСЯ ПРИ ПЛАВЛЕНИЯ ВЫСОКИХ ТЕМПЕРАТУРАХ В МЕДЕПЛАВИЛЬНЫХ ПЕЧАХ (ПЕЧЬ ВАНЮКОВА, КИСЛОРОДНО-ФАКЕЛЬНАЯ ПЛАВИЛЬНАЯ ПЕЧЬ И ОТРАЖАТЕЛЬНАЯ ПЕЧЬ), С ЦЕЛЬЮ ВОССТАНОВЛЕНИЯ МАГНЕТИТА (Fe_3O_4) ИЗ ШЛАКОВ, ОБРАЗУЮЩИХСЯ ПРИ ПЛАВЛЕНИИ.

ABSTRACT

IN THIS ARTICLE, THE CHEMICAL COMPOSITION OF SLAGS FORMED DURING HIGH-TEMPERATURE MELTING IN COPPER-SMELTING FURNACES (VANYUKOV FURNACE, OXYGEN-FLARE MELTING FURNACE AND REVERBERATORY FURNACE) WAS STUDIED IN ORDER TO RECOVER MAGNETITE (FE_3O_4) FROM SLAGS FORMED DURING MELTING.

Ключевые слова

Шихта, плавление, плавильные печи, печь Ванюкова, кислородно-факельная плавильная печь, отражательная печь, шлак, измельчение, магнетит, восстановление.

KEYWORDS

Charge, melting furnaces, Vanyukov furnace, oxygen-flare melting furnace, reverberatory furnace, slag, grinding, magnetite, recovery.

ВВЕДЕНИЕ

Предприятия республики по добыче сырья ежегодно образование около 180 млн. тонны отходов технологически связано производства, представленных пустой породами, отходами обогащения, шлаками и шламими, полученными при вскрытии поверхности полезных ископаемых.

Шлаки медеплавильных заводов образуются десятилетиями, и

ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11 | Issue-12 | 2023 Published: |22-12-2023 |

содержание в них полезных компонентов выше, чем в рудах, добываемых в настоящее время. Шлак содержит полезные компоненты, которые не извлекаются при первичной переработке, но могут быть извлечены при повторной переработке [1].

ЛИТЕРАТУРНЫЙ ОБЗОР

АО «Алмалыкский горно-металлургический комбинат» у шлак отвала собрано более 7 миллионов тонн шлаков. Медных шлаков ежегодно получается из печи Ванюкова, кислородно-факельная плавка и отражательного печа до 350-400 тыс. тонн, содержащих 38-45% железа, до 1% меди, 0,4-0,6 г/т золота и другие ценные компоненты [1].

Исследователи исследуются основном охлажденные шлаки, так как при охлаждении шлаков происходят различные физико-химические процессы, результаты косвенные данных могут быть ненадежными, так как жидкие шлаки с большим трудом изучаются в агрессивных средах при высоких температурах.

Исследование, проведенное узбекским ученым, показало, что средняя доля магнетита и железа в конвертерных шлаков составляет 20,26% и 48,32% соответственно [2].

По практическим данным определено что содержание магнетита в шлаках и штейнов которые полученного после плавки печи Ванюкова составляет в среднем 8,2% и 9,4% магнетита.

Химический состав шлаков печи кислородно-факельная плавка и отражательной печи приведен в таблице 1 [1].

Таблица 1.

Химические состав отвальных шлаков АО «Алмалыкский ГМК»

No	Вид	Содержание, %											
	1	Cu	Fe	5iO ₂	Al_2O_3	CdO	Zn	Pb	Fe ₃ O ₄	5	MgO	Ag	Au
			(общ.)									г/т	г/т
1.	КФП	0,83	31,6	32,6	5,9),5	1,2	0,3	15,1	2,1	0,8),57	0,21
2.	ЭΠ	0,61	34,7	34,6	2,8	3,6	1,8	0,1	17,2	0,2-7	1,6	0,34	0,07

Шлаки, образующиеся из плавильных печей, измельчено с помощью лабораторного мельница МШЛ-1 для анализа их химического состава.

ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11 | Issue-12 | 2023 Published: |22-12-2023 |

Рис. 1. Лабораторная мельница МШЛ-1. РЕЗУЛЬТАТЫ АНАЛИЗА

Проведен анализ состава шлаков с целью восстановления магнетита (Fe₃O₄) из состава шлаков, образующихся при плавке медных шихтов в плавильных печах (печь Ванюкова, печь кислородно-факельная плавка и отражательная плавильная печь) при высоких температурах.

а

Рис. 1. Вид шлака, образующегося из печи Ванюкова (плавка в жидкой ванне), до дробления (a) и после дробления (δ).

Таблица 2.

Химический состав шлака образовавшегося из печи ПЖВ

Nº	Формула	Элемент	Концентрация, %
1.	Fe ₂ O ₃	Оксид железа (III)	49,58
2.	SiO ₂	Диоксид кремния	20,98
3.	Al ₂ O ₃	Оксид алюминия	5,702
4.	CaO	Оксид кальция	3,954
5.	Zn	Цинк	1,053

ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11 | Issue-12 | 2023 Published: |22-12-2023 |

6.	Cu	Медь	0,4677
7.	Pb	Свинец	0,3062
8.	MnO	Оксид марганца (II)	0,2296
9.	Ti	Титан	0,1924
10.	Mo	Молибден	0,1712

a σ

Рис. 3. Вид шлака, образующегося из печи КФП (кислороднофакельная плавка), до дробления (a) и после дробления (δ).

Таблица 3.

Химический состав шлака образовавшегося из печи КФП

Nº	Формула	Элемент	Концентрация, %		
1.	Fe ₂ O ₃	Оксид железа (III)	43,06		
2.	SiO ₂	Диоксид кремния	23,47		
3.	Al ₂ O ₃	Оксид алюминия	6,515		
4.	CaO	Оксид кальция	3,562		
5.	Zn	Цинк	0,8037		
6.	Cu	Медь	0,4792		
7.	Pb	Свинец	0,3217		
8.	Ti	Титан	0,2918		
9.	MnO	Оксид марганца (II)	0,1995		
10.	W	Вольфрам	116,1 (мг/г)		
11.	Mo	Молибден	0,1474		

ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11 | Issue-12 | 2023 Published: |22-12-2023 |

Рис. 4. Вид шлака, образующегося из отражательной плавильной печи, (a) до дробления и (b) после дробления.

б

Таблица 4.

Химический состав шлака образовавшегося из отражательной плавилной печи

No	Формула	Элемент	Концентрация, %
1.	Fe ₂ O ₃	Оксид железа (III)	44,31
2.	SiO ₂	Диоксид кремния	25,43
3.	Al ₂ O ₃	Оксид алюминия	6,748
4.	CaO	Оксид кальция	3,313
5.	Zn	Цинк	0,7294
6.	Cu	Медь	0,4025
7.	MnO	Оксид марганца (II)	0,2605
8.	Ti	Титан	0,2009
9.	Pb	Свинец	0,1563
10.	Mo	Молибден	0,09756
11.	W	Вольфрам	93,6 (мг/г)

вывод

Литературной обзор и результаты анализа показали, что шлаки, образованные из печах Ванюкова (ПЖВ), кислородно-факельная плавка (КФП) и отражательной плавильной печи, изучены на наличие 45,65% Fe₂O₃, 32,3% Fe₃O₄ и 23,3% SiO₂. Средняя доля магнетита и железа в составе конвертерных шлаков составляет 20,26% и 48,32%.

Совместно со шлаками печах Ванюкова (ПЖВ), кислородно-факельная плавка (КФП) и отражательной плавильной печи целесообразно провести и исследовательские работы по восстановлению магнетита, содержащегося в преобразовательном конвертерном шлаке.

ISSN: 2945-4492 (online) | (SJIF) = 7.502 Impact factor

Volume-11 | Issue-12 | 2023 Published: |22-12-2023 |

ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. A.U.Samadov, N.M.Askarova Mis ishlab chiqarish shlaklarini qayta ishlash texnologiyasini takomillashtirish T.: "Lesson Press" nashriyoti, 2021, 96 b.
- 2. Мухаметджанова Ш.А. Разработка эффективной технологии переработки конвертерных шлаков медного производства с целью увеличения выхода металлов, диссертация на соискание ученой степени доктора философии (PhD), Ташкент, 2020. 118 стр.
- 3. Аскарова, Н. М., & Самадов, А. У. (2020). ИННОВАЦИОННЫЙ ПОДХОД К ПОДГОТОВКЕ ОТВАЛЬНЫХ ШЛАКОВ МЕДНОГО ПРОИЗВОДСТВА ДЛЯ ДАЛЬНЕЙШЕЙ ПЕРЕРАБОТКИ. *Universum: технические науки*, (11-5 (80)), 45-47.
- 4. Аскарова, Нилуфар Мусурмановна, and Алишер Усманович Самадов. "ИННОВАЦИОННЫЙ ПОДХОД К ПОДГОТОВКЕ ОТВАЛЬНЫХ ШЛАКОВ МЕДНОГО ПРОИЗВОДСТВА ДЛЯ ДАЛЬНЕЙШЕЙ ПЕРЕРАБОТКИ." *Universum: технические науки* 11-5 (80) (2020): 45-47.
- M. K., &Аскарова, H. M. (2021,Куралова, December). ИННОВАЦИОННЫЙ ПОДХОД ВОЗМОЖНОСТИ ИЗВЛЕЧЕНИЯ МЕДИ И БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ КОНВЕРТЕРНЫХ ШЛАКОВ. In Здравствуйте, уважаемые участники международной научной научнотехнической конференции, дорогие гости! (р. 406).
- 6. Аскарова, Н. М. (2021). НЕКОТОРЫЕ МИНЕРАЛОГИЧЕСКИЕ СВОЙСТВА ТЕРМИЧЕСКИ ОБРАБОТАННОГО ШЛАКА АО «АЛМАЛЫКСКИЙ ГМК». *Universum: технические науки*, (4-1), 63-67.
- 7. Самадов, А. У., & Аскарова, Н. М. (2018). Флотационные свойства быстроохлажденного шлака медного производства. *Навоий, Горный вестник Узбекистана*, (4-C), 103-106.
- 8. Аскарова, Н. М., & Самадов, А. У. (2020). Возможности переработки шлаков медного производства гидрометаллургическим способом. *Вестник* науки и образования, (10-2 (88)), 36-39.