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A GOURSE PROBLEM FOR A FOURTH-ORDER EQUATION WITH TWO
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Abstract: In the article, I showed the method of solving the fourth-order hyperbolic equation using the
Ul substitution operator. Nowadays, this method is a developing method and is important in mathematical
physics. As a result of the calculations in the article, the solution of the equation is significant.
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1. Introduction. The problem of finding a classical solution of a fourth-order
hyperbolic equation with a singular coefficient using the modern method of
mathematical physics - the substitution operator is solved in this article. First, we
put the problem, for this we enter it like the field for which the solution is sought.
The field consists of a rectangle, and the values of the function are given at the
boundaries of the field. During the solution of the problem, we take a fixed point
from the inside of the field, using it to find the solution in a transparent way. we
will have

2. Main part
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let's look at the equation here
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The general solution of equation (1) has the following form
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here f,(y), 9,(x), (k=1,2) arbitrary continuously differentiable functions.

For equation (1), @ we study the analogue of Gursa's problem in the field.
Gursa issue. Q in the area (1) of this equation

UO.y) =@ (y), limx*U,(xy)=p,(y).0<y<h, (3)
U (x,0) =y, (x), yILTo YU, (X, ) =y, (x), 0< x<I; 4)

find a classical solution satisfying the conditions here ¢, (y), v, (x) (k =1,2) given
functions.
To solve this problem, the general solution (21) is optional by putting
conditions (3) and (4) f,(y), g9,(x), (k =1,2) we find functions.
LY =y "Ly oW, (0 =y Iy’¢l(y)],
9,(¥) =y, (x) 9,(X) =, (X)
Found f, (y), g, (x), (k =12) putting (21) into the general solution,

1-28 1-2a

y X h 1-2p L1283 204 -2B[+2P 1 (+\]'
U0y =y + 52w+ )(Hﬂ)![y Ry (O] dt +

L[y epen e g

12ﬂ

we create a solution.. ¢(y) and ¢,(y)xosilalari gatnashgan integrallarini

hisoblaymiz.

We calculate the integrals involving derivatives
1-28 1-2a
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may have a small specialty.
Then this
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function is the only solution to the Gursa problem.

U (X y) = (y) +w.(x)+ [2,(Y) - 2,(0)] - ¢,(0) &)

To prove the theorem, it is necessary to show that function (5) satisfies
equation (1) and conditions (3), (4).

For this, we check that function (5) satisfies conditions (3) and (4).¢,(0)=0
from equality U(0,y)=¢,(y), IXILT(} x*U, =p,(Y)—9,(0)=,(y), it follows that the
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We show that the conditions are appropriate. We take the necessary
derivatives from the function (5) and check that it satisfies the equation (1).
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the theorem is proved

1-2

U, (% Y) =y (X)+ X p,(y) + w5 (X)

U, (x,y)=¢l(y)+ (V) + Yy, (%)

V. Summary

An analogue of the Gursa problem was studied for this third-order
pseudohyperbolic equation with singular coefficients. It is shown that the solution
of the Gursa problem is equivalent to the Volterra integral equation of the second
kind. In the second paragraph, the solution to the Gursa issue is clearly found. The
property of the fractional Erdey-Kober operator being a substitution operator was
used to find the solution. In this case, the solution of the auxiliary problem to the
Gursa problem was brought to the studied Gursa problem using the property of the
Erdey-Kober operator, and the solution of the problem was found using this
solution. After that, the solution of the main problem was found using the solution
of the auxiliary problem.
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