KAPUTO-FABRITSIO OPERATORI ISHTIROK ETGAN DIFFERENSIAL TENGLAMA UCHUN NOLOKAL MASALA
Keywords:
Kaputo-Fabritsio operatori; nolokalshart; Lejandr polinomlari; Furye usuli.Abstract
Ushbu ishda vaqt oʻzgaruvchisi boʻyicha Kaputo-Fabritsio operatori, fazoviy oʻzgaruvchi bo`yicha esa Lejandr operatori qatnashgan xususiy hosilali differensial tenglama uchun nolokal shartli masalaning bir qiymatli yechilishi isbotlangan. Bunda Lejandr polinomlarining xossalaridan foydalanilgan
References
Sakamoto K., Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. // Journal of Mathematical Analysis and Applications. -2011. -Vol.382(1), pp. 426-447.
Pskhu A. V. Partial Differential Equations of Fractional Order. Moscow, Nauka. -2005.
Garra R., Orsingher E., Polito F. Fractional diffusion with time-varying coefficients.// J. of Math. Phys. -2015. -Vol. 56(9), pp. 1-19.
Bulavatsky V. M. Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer’s generalized derivative.// Cybernetics and Systems Analysis. -2014. - Vol. 30(4). pp.570-577.
Al-Salti N., Karimov E.T. and Kerbal S. Boundary-value problems for fractional heat equation involving Caputo-Fabrizio derivative. New Trends in Mathematical Sciences. 2016, Vol.4, No 4, pp.79-89.
Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, Vol.1, No 2, pp.73-85.
Tolstov G.P. Fourier series (translated by R.A. Silverman).// Prentice Hall, Inc., Englewood Cliffs, N. J. -1962.
Al-Salti N., Karimov E.T. Inverse source problems for degenerate time-fractional PDE. Progr.Fract.Differ.Appl., 2022, Vol.8, No 1, pp.39-52.